Compactness of the order-sequential topology

Jan Starý

with B. Balcar

Hejnice 2013

Outline

<ロ> <同> <同> < 同> < 同>

æ

• the order-sequential topology

э

- the order-sequential topology
- compactness: restrictions

э

- the order-sequential topology
- compactness: restrictions
- towards compactness: KC spaces

< A ▶

→ Ξ →

- the order-sequential topology
- compactness: restrictions
- towards compactness: KC spaces
- the accummulation condition

< ∃ >

A D

-

Outline

- the order-sequential topology
- compactness: restrictions
- towards compactness: KC spaces
- the accummulation condition
- Jech forcing

A 10

I ≡ ▶ < </p>

Outline

- the order-sequential topology
- compactness: restrictions
- towards compactness: KC spaces
- the accummulation condition
- Jech forcing
- questions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

The order-sequential topology

Definition: Let \mathbb{B} be a σ -complete Boolean algebra.

< ∃ →

The order-sequential topology

Definition: Let \mathbb{B} be a σ -complete Boolean algebra. A sequence (a_n) in \mathbb{B} converges algebraically to $a \in \mathbb{B}$ iff

$$\bigwedge_{m\in\omega}\bigvee_{n\geq m}a_n=a=\bigvee_{m\in\omega}\bigwedge_{n\geq m}a_n$$

The order-sequential topology

Definition: Let \mathbb{B} be a σ -complete Boolean algebra. A sequence (a_n) in \mathbb{B} converges algebraically to $a \in \mathbb{B}$ iff

$$\bigwedge_{m\in\omega}\bigvee_{n\geq m}a_n=a=\bigvee_{m\in\omega}\bigwedge_{n\geq m}a_n$$

The order-sequential topology τ_s on \mathbb{B} is the finest topology for which every algebraically convergent sequence in \mathbb{B} is topologically convergent.

- A - B - M

The order-sequential topology

Definition: Let \mathbb{B} be a σ -complete Boolean algebra. A sequence (a_n) in \mathbb{B} converges algebraically to $a \in \mathbb{B}$ iff

$$\bigwedge_{m\in\omega}\bigvee_{n\geq m}a_n=a=\bigvee_{m\in\omega}\bigwedge_{n\geq m}a_n$$

The order-sequential topology τ_s on \mathbb{B} is the finest topology for which every algebraically convergent sequence in \mathbb{B} is topologically convergent. (There *is* such a finest topology on \mathbb{B} : take the union of all such topologies as a subbase.)

A 3 3 4 4

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

Example

Example: Consider the set 2^{κ} equipped with two topologies: the classical Cantor topology τ_c and the sequential topology τ_s , viewing 2^{κ} as the complete algebra $P(\kappa)$.

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

Example

Example: Consider the set 2^{κ} equipped with two topologies: the classical Cantor topology τ_c and the sequential topology τ_s , viewing 2^{κ} as the complete algebra $P(\kappa)$. The algebraic convergence in $P(\kappa)$ is the pointwise convergence;

▲□ ► < □ ► </p>

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

Example

Example: Consider the set 2^{κ} equipped with two topologies: the classical Cantor topology τ_c and the sequential topology τ_s , viewing 2^{κ} as the complete algebra $P(\kappa)$. The algebraic convergence in $P(\kappa)$ is the pointwise convergence; hence $\tau_c \subseteq \tau_s$.

< ロ > < 同 > < 回 > < 回 >

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

Example

Example: Consider the set 2^{κ} equipped with two topologies: the classical Cantor topology τ_c and the sequential topology τ_s , viewing 2^{κ} as the complete algebra $P(\kappa)$. The algebraic convergence in $P(\kappa)$ is the pointwise convergence; hence $\tau_c \subseteq \tau_s$. In fact, $(2^{\kappa}, \tau_s)$ is the sequential modification of $(2^{\kappa}, \tau_c)$; hence $(2^{\kappa}, \tau_s)$ is not compact

・ロト ・同ト ・ヨト ・ヨト

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

Example

Example: Consider the set 2^{κ} equipped with two topologies: the classical Cantor topology τ_c and the sequential topology τ_s , viewing 2^{κ} as the complete algebra $P(\kappa)$. The algebraic convergence in $P(\kappa)$ is the pointwise convergence; hence $\tau_c \subseteq \tau_s$. In fact, $(2^{\kappa}, \tau_s)$ is the sequential modification of $(2^{\kappa}, \tau_c)$; hence $(2^{\kappa}, \tau_s)$ is not compact unless $\kappa = \omega$.

・ロト ・同ト ・ヨト ・ヨト

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

Example

Example: Consider the set 2^{κ} equipped with two topologies: the classical Cantor topology τ_c and the sequential topology τ_s , viewing 2^{κ} as the complete algebra $P(\kappa)$. The algebraic convergence in $P(\kappa)$ is the pointwise convergence; hence $\tau_c \subseteq \tau_s$. In fact, $(2^{\kappa}, \tau_s)$ is the sequential modification of $(2^{\kappa}, \tau_c)$; hence $(2^{\kappa}, \tau_s)$ is not compact unless $\kappa = \omega$. The class of convergent sequences is the same.

< ロ > < 同 > < 回 > < 回 >

Properties of the order-sequential topology: [Balcar-Glowczynski-Jech]

• (\mathbb{B}, τ_s) is sequential.

э

Properties of the order-sequential topology: [Balcar-Glowczynski-Jech]

- (\mathbb{B}, τ_s) is sequential.
- (\mathbb{B}, τ_s) has the ULP (and hence is T_1).

Properties of the order-sequential topology: [Balcar-Glowczynski-Jech]

- (\mathbb{B}, τ_s) is sequential.
- (\mathbb{B}, τ_s) has the ULP (and hence is T_1).
- (\mathbb{B}, τ_s) is homogeneous (via translations).

Properties of the order-sequential topology: [Balcar-Glowczynski-Jech]

- (\mathbb{B}, τ_s) is sequential.
- (\mathbb{B}, τ_s) has the ULP (and hence is T_1).
- (\mathbb{B}, τ_s) is homogeneous (via translations).
- τ_s is determined by the neighbourhood filter of zero.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Properties of the order-sequential topology: [Balcar-Glowczynski-Jech]

- (\mathbb{B}, τ_s) is sequential.
- (\mathbb{B}, τ_s) has the ULP (and hence is T_1).
- (\mathbb{B}, τ_s) is homogeneous (via translations).
- τ_s is determined by the neighbourhood filter of zero.
- (\mathbb{B}, τ_s) has no isolated points unless \mathbb{B} is finite.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Properties of the order-sequential topology: [Balcar-Glowczynski-Jech]

- (\mathbb{B}, τ_s) is sequential.
- (\mathbb{B}, τ_s) has the ULP (and hence is T_1).
- (\mathbb{B}, τ_s) is homogeneous (via translations).
- τ_s is determined by the neighbourhood filter of zero.
- (\mathbb{B}, τ_s) has no isolated points unless \mathbb{B} is finite.
- (\mathbb{B}, τ_s) is connected if \mathbb{B} is complete and atomless.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (BGJ)

For a σ -complete algebra \mathbb{B} the following are equivalent:

- The topologically convergent sequences of (B, τ_s) are precisely the algebraically convergent sequences of B
- \mathbb{B} is $(\omega, 2)$ -distributive
- $\mathbb B$ does not add new reals

(日) (同) (三) (三)

Theorem (BGJ)

For a σ -complete algebra \mathbb{B} the following are equivalent:

- The topologically convergent sequences of (B, τ_s) are precisely the algebraically convergent sequences of B
- \mathbb{B} is $(\omega, 2)$ -distributive
- $\mathbb B$ does not add new reals

Example

Enumerate $CO(2^{\omega})$ as $\{a_n; n \in \omega\}$ and consider (a_n) as a sequence in the Cohen algebra $RO(2^{\omega})$. It is easily seen that the sequence converges topologically to zero, while $\limsup a_n = 1$ and $\limsup a_n = 0$, so the sequence does not converge algebraically.

・ロト ・同ト ・ヨト ・ヨト

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

The space (\mathbb{B}, τ_s) is not necessarilly Hausdorff; in fact

э

compactness: restrictions towards compactness: KC spaces the accummulation condition Jech forcing questions

The space (\mathbb{B}, τ_s) is not necessarilly Hausdorff; in fact

Theorem (BGJ)

For a complete ccc algebra \mathbb{B} , the space (\mathbb{B}, τ_s) is Hausdorff if and only if \mathbb{B} is a Maharam algebra: carries a strictly positive continuous submeasure.

- 4 回 ト 4 ヨト 4 ヨト

Question: when is (\mathbb{B}, τ_s) compact?

< ロ > < 同 > < 回 > < 回 >

э

Question: when is (\mathbb{B}, τ_s) compact?

Theorem (Glowczynski)

If (\mathbb{B}, τ_s) is compact Hausdorff, then \mathbb{B} is isomorphic to $P(\omega)$.

Question: when is (\mathbb{B}, τ_s) compact?

Theorem (Glowczynski)

If (\mathbb{B}, τ_s) is compact Hausdorff, then \mathbb{B} is isomorphic to $P(\omega)$.

So looking for compact (\mathbb{B}, τ_s) besides $P(\omega)$, we have to drop T_2 ; that is, give up Maharamity.

Theorem (Balcar-Jech-Pazák)

Let \mathbb{B} be a complete Boolean algebra. The the space (\mathbb{B}, τ_s) is countably compact if and only if \mathbb{B} does not add independent reals.

Theorem (Balcar-Jech-Pazák)

Let \mathbb{B} be a complete Boolean algebra. The the space (\mathbb{B}, τ_s) is countably compact if and only if \mathbb{B} does not add independent reals.

Theorem

Let \mathbb{B} be complete. Then for (\mathbb{B}, τ_s) to be compact, \mathbb{B} must be ccc.

Theorem (Balcar-Jech-Pazák)

Let \mathbb{B} be a complete Boolean algebra. The the space (\mathbb{B}, τ_s) is countably compact if and only if \mathbb{B} does not add independent reals.

Theorem

Let \mathbb{B} be complete. Then for (\mathbb{B}, τ_s) to be compact, \mathbb{B} must be ccc.

Proof:

If not, let X be an antichain of size \aleph_1 . By completeness, we can assume that X is a maximal antichain (add $-\bigvee X$ otherwise).

(4月) (1日) (1日)

Theorem (Balcar-Jech-Pazák)

Let \mathbb{B} be a complete Boolean algebra. The the space (\mathbb{B}, τ_s) is countably compact if and only if \mathbb{B} does not add independent reals.

Theorem

Let \mathbb{B} be complete. Then for (\mathbb{B}, τ_s) to be compact, \mathbb{B} must be ccc.

Proof:

If not, let X be an antichain of size \aleph_1 . By completeness, we can assume that X is a maximal antichain (add $-\bigvee X$ otherwise). This generates a copy of $P(\omega_1)$ as a complete subalgebra in \mathbb{B} ; this copy is a sequentially closed, hence closed subspace of (\mathbb{B}, τ_s) .

< ロ > < 同 > < 回 > < 回 >

Theorem (Balcar-Jech-Pazák)

Let \mathbb{B} be a complete Boolean algebra. The the space (\mathbb{B}, τ_s) is countably compact if and only if \mathbb{B} does not add independent reals.

Theorem

Let \mathbb{B} be complete. Then for (\mathbb{B}, τ_s) to be compact, \mathbb{B} must be ccc.

Proof:

If not, let X be an antichain of size \aleph_1 . By completeness, we can assume that X is a maximal antichain (add $-\bigvee X$ otherwise). This generates a copy of $P(\omega_1)$ as a complete subalgebra in \mathbb{B} ; this copy is a sequentially closed, hence closed subspace of (\mathbb{B}, τ_s) . So if (\mathbb{B}, τ_s) is compact, then $(2^{\omega_1}, \tau_s)$ is a compact Hausdorff space, with a topology strictly finer than $(2^{\omega_1}, \tau_c)$ — a contradiction.

Thus in the search for compact (\mathbb{B}, τ_s) we restrict ourselves to complete infinite ccc algebras which are not Hausdorff (hence not Maharam) and do not add independent reals.

伺 ト イ ヨ ト イ ヨ ト

Thus in the search for compact (\mathbb{B}, τ_s) we restrict ourselves to complete infinite ccc algebras which are not Hausdorff (hence not Maharam) and do not add independent reals. Every regular subalgebra must be compact too, otherwise it is a closed noncompact subspace.

□ > < = > <

Thus in the search for compact (\mathbb{B}, τ_s) we restrict ourselves to complete infinite ccc algebras which are not Hausdorff (hence not Maharam) and do not add independent reals.

Every regular subalgebra must be compact too, otherwise it is a closed noncompact subspace.

We don't know of any ZFC examples.

Thus in the search for compact (\mathbb{B}, τ_s) we restrict ourselves to complete infinite ccc algebras which are not Hausdorff (hence not Maharam) and do not add independent reals.

Every regular subalgebra must be compact too, otherwise it is a closed noncompact subspace.

We don't know of any ZFC examples.

Suslin is a candidate.

Suslin

Let (T, \leq) be a Suslin tree, and let $\mathbb{B} = \mathbb{B}(T)$ be the complete algebra determined by (T, \leq) .

Suslin

Let (T, \leq) be a Suslin tree, and let $\mathbb{B} = \mathbb{B}(T)$ be the complete algebra determined by (T, \leq) . Let $T_{\alpha}, \alpha < \omega_1$ be the countable levels of T, so T_{β} is a refinement of T_{α} for $\alpha < \beta < \omega_1$.

Suslin

Let (T, \leq) be a Suslin tree, and let $\mathbb{B} = \mathbb{B}(T)$ be the complete algebra determined by (T, \leq) . Let $T_{\alpha}, \alpha < \omega_1$ be the countable levels of T, so T_{β} is a refinement

Let $I_{\alpha}, \alpha < \omega_1$ be the countable levels of I, so I_{β} is a refinement of T_{α} for $\alpha < \beta < \omega_1$.

Let \mathbb{B}_{α} be the subalgebra completely generated by \mathcal{T}_{α} .

Suslin

Let (T, \leq) be a Suslin tree, and let $\mathbb{B} = \mathbb{B}(T)$ be the complete algebra determined by (T, \leq) .

Let $T_{\alpha}, \alpha < \omega_1$ be the countable levels of T, so T_{β} is a refinement of T_{α} for $\alpha < \beta < \omega_1$.

Let \mathbb{B}_{α} be the subalgebra completely generated by T_{α} . \mathbb{B}_{α} is a copy of $P(\omega)$ and \mathbb{B}_{α} is a regular subalgebra of \mathbb{B}_{β} for $\alpha < \beta < \omega_1$.

Suslin

Let (T, \leq) be a Suslin tree, and let $\mathbb{B} = \mathbb{B}(T)$ be the complete algebra determined by (T, \leq) .

Let $T_{\alpha}, \alpha < \omega_1$ be the countable levels of T, so T_{β} is a refinement of T_{α} for $\alpha < \beta < \omega_1$.

Let \mathbb{B}_{α} be the subalgebra completely generated by T_{α} . \mathbb{B}_{α} is a copy of $P(\omega)$ and \mathbb{B}_{α} is a regular subalgebra of \mathbb{B}_{β} for $\alpha < \beta < \omega_1$.

The algebra \mathbb{B} is a direct limit of the chain of algebras B_{α} .

Suslin

Properties of $(\mathbb{B}(T), \tau_s)$

• \mathbb{B} is atomless, so (\mathbb{B}, τ_s) is connected.

э

Suslin

Properties of $(\mathbb{B}(T), \tau_s)$

- \mathbb{B} is atomless, so (\mathbb{B}, τ_s) is connected.
- B is ω-distributive, hence topological convergence in (B, τ_s) coincides with algebraic convergence in B.

< 🗇 > < 🖃 >

Suslin

Properties of $(\mathbb{B}(T), \tau_s)$

- \mathbb{B} is atomless, so (\mathbb{B}, τ_s) is connected.
- B is ω-distributive, hence topological convergence in (B, τ_s) coincides with algebraic convergence in B.
- Not a Maharam algebra, hence not Hausdorff.

< 🗇 > < 🖃 >

Suslin

Properties of $(\mathbb{B}(T), \tau_s)$

- \mathbb{B} is atomless, so (\mathbb{B}, τ_s) is connected.
- B is ω-distributive, hence topological convergence in (B, τ_s) coincides with algebraic convergence in B.
- Not a Maharam algebra, hence not Hausdorff.
- Sequentially compact (hence countably compact too).

▲ □ ▶ ▲ □ ▶ ▲

Suslin

Properties of $(\mathbb{B}(T), \tau_s)$

- \mathbb{B} is atomless, so (\mathbb{B}, τ_s) is connected.
- B is ω-distributive, hence topological convergence in (B, τ_s) coincides with algebraic convergence in B.
- Not a Maharam algebra, hence not Hausdorff.
- Sequentially compact (hence countably compact too).
- The subalgebras \mathbb{B}_{α} as subspaces of \mathbb{B} under τ_s are copies of the Cantor space $(2^{\omega}, \tau_c)$.

Suslin

Properties of $(\mathbb{B}(T), \tau_s)$

- \mathbb{B} is atomless, so (\mathbb{B}, τ_s) is connected.
- B is ω-distributive, hence topological convergence in (B, τ_s) coincides with algebraic convergence in B.
- Not a Maharam algebra, hence not Hausdorff.
- Sequentially compact (hence countably compact too).
- The subalgebras B_α as subspaces of B under τ_s are copies of the Cantor space (2^ω, τ_c).
- Every \mathbb{B}_{α} is a closed nowhere dense subset of $\mathbb{B}_{\alpha+1}$.

・ロト ・同ト ・ヨト ・ヨト

Suslin

Properties of $(\mathbb{B}(T), \tau_s)$

- \mathbb{B} is atomless, so (\mathbb{B}, τ_s) is connected.
- B is ω-distributive, hence topological convergence in (B, τ_s) coincides with algebraic convergence in B.
- Not a Maharam algebra, hence not Hausdorff.
- Sequentially compact (hence countably compact too).
- The subalgebras B_α as subspaces of B under τ_s are copies of the Cantor space (2^ω, τ_c).
- Every \mathbb{B}_{α} is a closed nowhere dense subset of $\mathbb{B}_{\alpha+1}$.
- The space (\mathbb{B}, τ_s) is a direct limit of the spaces (B_{α}, τ_s) .

Proof: consider a set $A \subseteq \mathbb{B}$ such that every $A \cap \mathbb{B}_{\alpha}$ is closed in \mathbb{B}_{α} ; show that A is sequentially closed in \mathbb{B} .

KC spaces

"That lemma you remember from Engelking is probably for Hausdorff spaces only" – Tom Pazák.

A > 4 3

KC spaces

"That lemma you remember from Engelking is probably for Hausdorff spaces only" – Tom Pazák. Definition: A topological space is a *(strongly) KC* space iff every (countably) compact subset is closed.

KC spaces

"That lemma you remember from Engelking is probably for Hausdorff spaces only" – Tom Pazák. Definition: A topological space is a *(strongly) KC* space iff every (countably) compact subset is closed. Fact: $T_2 \rightarrow KC \rightarrow ULP \rightarrow T_1$.

- 4 周 ト 4 戸 ト 4 戸 ト

KC spaces

"That lemma you remember from Engelking is probably for Hausdorff spaces only" – Tom Pazák. Definition: A topological space is a *(strongly) KC* space iff every (countably) compact subset is closed. Fact: $T_2 \rightarrow KC \rightarrow ULP \rightarrow T_1$. Old spaces from *S. Franklin: Spaces where sequences suffice* work as the isolating examples.

A (1) > (1) = (1)

KC spaces

"That lemma you remember from Engelking is probably for Hausdorff spaces only" – Tom Pazák. Definition: A topological space is a *(strongly) KC* space iff every

(countably) compact subset is closed.

Fact: $T_2 \rightarrow KC \rightarrow ULP \rightarrow T_1$.

Old spaces from *S. Franklin: Spaces where sequences suffice* work as the isolating examples.

Many of folklore results continue to hold for KC:

Lemma

A continuous bijection from a compact space to a KC space is a homeomorphism. A compact KC space is maximal compact and minimal KC.

・ロト ・同ト ・ヨト ・ヨト

Theorem (Bella, 2008)

Minimal KC spaces are compact.

イロト イポト イヨト イヨト

э

Theorem (Bella, 2008)

Minimal KC spaces are compact.

Theorem

 (\mathbb{B}, τ_s) is a strongly KC space.

(日) (同) (三) (三)

э

Theorem (Bella, 2008)

Minimal KC spaces are compact.

Theorem

 (\mathbb{B}, τ_s) is a strongly KC space.

Proof: Let K be a countably compact subset of (\mathbb{B}, τ_s) . Show that K is sequentially closed.

Theorem (Bella, 2008)

Minimal KC spaces are compact.

Theorem

 (\mathbb{B}, τ_s) is a strongly KC space.

Proof: Let K be a countably compact subset of (\mathbb{B}, τ_s) . Show that K is sequentially closed.

Theorem

 (\mathbb{B}, τ_s) is a minimal strongly KC space.

イロト イ団ト イヨト イヨト

Theorem (Bella, 2008)

Minimal KC spaces are compact.

Theorem

 (\mathbb{B}, τ_s) is a strongly KC space.

Proof: Let K be a countably compact subset of (\mathbb{B}, τ_s) . Show that K is sequentially closed.

Theorem

 (\mathbb{B}, τ_s) is a minimal strongly KC space.

Proof: Let τ be a strongly KC topology on \mathbb{B} that is strictly coarser than τ_s . Then the identity mapping from (\mathbb{B}, τ_s) to (\mathbb{B}, τ) is a continuous bijection, hence a homeomorphism — a contradiction.

Question: is $\mathbb{B}(T)$ minimal KC?

<ロ> <同> <同> < 同> < 同>

æ

Question: is $\mathbb{B}(\mathcal{T})$ minimal KC? If not, see blackboard.

э

accumulation

Definition (Thümmel):

Let T be a Suslin tree. For a coloring $\chi : T \to 2$ and $\alpha < \beta < \omega_1$, say that β returns to α if there is an increasing sequence of ordinals $\alpha_n < \beta$ such that $\alpha_0 = \alpha$, sup $\alpha_n = \beta$, and for every node $x \in T_{\alpha}$ there is a fixed color $k(x) \in 2$ with the property that for every $y \in T_{\beta}$ with y > x, the set $\{n \in \omega; \chi(y|\alpha_n) \neq k(x)\}$ is finite.

・ 同 ト ・ ヨ ト ・ ヨ ト

accumulation

Definition (Thümmel):

Let *T* be a Suslin tree. For a coloring $\chi : T \to 2$ and $\alpha < \beta < \omega_1$, say that β returns to α if there is an increasing sequence of ordinals $\alpha_n < \beta$ such that $\alpha_0 = \alpha$, sup $\alpha_n = \beta$, and for every node $x \in T_{\alpha}$ there is a fixed color $k(x) \in 2$ with the property that for every $y \in T_{\beta}$ with y > x, the set $\{n \in \omega; \chi(y|\alpha_n) \neq k(x)\}$ is finite. The coloring accumulates if for some $\alpha < \omega_1$, there is unboundedly many $\beta > \alpha$ that return to α .

・ 同 ト ・ ヨ ト ・ ヨ ト

accumulation

Definition (Thümmel):

Let *T* be a Suslin tree. For a coloring $\chi : T \to 2$ and $\alpha < \beta < \omega_1$, say that β returns to α if there is an increasing sequence of ordinals $\alpha_n < \beta$ such that $\alpha_0 = \alpha$, sup $\alpha_n = \beta$, and for every node $x \in T_{\alpha}$ there is a fixed color $k(x) \in 2$ with the property that for every $y \in T_{\beta}$ with y > x, the set $\{n \in \omega; \chi(y|\alpha_n) \neq k(x)\}$ is finite. The coloring accumulates if for some $\alpha < \omega_1$, there is unboundedly many $\beta > \alpha$ that return to α . Fact: The level β returns to $\alpha < \beta$ if and only if the points

 $x_n = \bigvee \{ p \in T_{\alpha_n}; \chi(p) = 1 \} \in \mathbb{B}_{\alpha_n} \text{ converge to the point}$ $x = \bigvee \{ p \in T_{\alpha}; k(p) = 1 \} \in \mathbb{B}_{\alpha} \text{ algebraically.}$

< ロ > < 同 > < 回 > < 回 >

Theorem (Thümmel)

For a Suslin tree T, the following are equivalent.

- The space $(\mathbb{B}(T), \tau_s)$ is compact.
- ② For every subtree *S* ⊆ *T* of the form *S* = $\bigcup_{\alpha \in M} T_{\alpha}$, where $M \in [\omega_1]^{\omega_1}$, every coloring $\chi : S \to 2$ accummulates.

(日) (同) (三) (三)

Jech forcing

Conditions: "partial Suslin trees". Subtree $T \subseteq 2^{<\omega_1}$ of height $h(T) = \alpha + 1$, α limit; no uncountable antichains.

▲ □ ▶ ▲ □ ▶ ▲

Jech forcing

Conditions: "partial Suslin trees". Subtree $T \subseteq 2^{<\omega_1}$ of height $h(T) = \alpha + 1$, α limit; no uncountable antichains. This is σ -closed, hence ω -distributive.

Jech forcing

Conditions: "partial Suslin trees". Subtree $T \subseteq 2^{<\omega_1}$ of height $h(T) = \alpha + 1$, α limit; no uncountable antichains. This is σ -closed, hence ω -distributive. The generic tree $\subseteq 2^{\omega_1}$ is a Suslin tree.

- A 3 N

Jech forcing

Conditions: "partial Suslin trees". Subtree $T \subseteq 2^{<\omega_1}$ of height $h(T) = \alpha + 1$, α limit; no uncountable antichains. This is σ -closed, hence ω -distributive. The generic tree $\subseteq 2^{\omega_1}$ is a Suslin tree. For $\alpha \in \omega_1$, let D_α consist of those Jech trees $T \subseteq 2^{\omega_1}$ for which there is some β such that $\alpha + \beta < h(T)$ and for all $f \in T$, $\{\xi \in (\alpha, \beta); f(\xi) = 1\}$ is finite.

伺下 イヨト イヨト

Jech forcing

Conditions: "partial Suslin trees". Subtree $T \subseteq 2^{<\omega_1}$ of height $h(T) = \alpha + 1$, α limit; no uncountable antichains. This is σ -closed, hence ω -distributive. The generic tree $\subseteq 2^{\omega_1}$ is a Suslin tree. For $\alpha \in \omega_1$, let D_α consist of those Jech trees $T \subseteq 2^{\omega_1}$ for which there is some β such that $\alpha + \beta < h(T)$ and for all $f \in T$, $\{\xi \in (\alpha, \beta); f(\xi) = 1\}$ is finite.

Theorem

Every D_{α} is a dense set on the Jech forcing. The generic Suslin tree satisfies the accumulation condition for the inherited coloring.

< ロ > < 同 > < 回 > < 回 >

questions

(1) \diamondsuit provides ccc algebras that do not add an independent real. These are the only compactness candidates we know about. PID kills \diamondsuit . Does PID kill all possible compactness candidates?

questions

(1) ◊ provides ccc algebras that do not add an independent real. These are the only compactness candidates we know about. PID kills ◊. Does PID kill all possible compactness candidates?
(2) In some literature, the notion of a *Suslin algebra* is more general: a complete ccc distributive algebra; not not necessarily a completion of a Suslin tree. (These consistently exist.) Can these be compact?

questions

(1) ◊ provides ccc algebras that do not add an independent real. These are the only compactness candidates we know about. PID kills ◊. Does PID kill all possible compactness candidates?
(2) In some literature, the notion of a *Suslin algebra* is more general: a complete ccc distributive algebra; not not necessarily a completion of a Suslin tree. (These consistently exist.) Can these be compact?

(3) Consistently (Jech) there is 2^{\aleph_1} isomorphism types of Suslin trees. Also consistently (Todorčević), 2^{\aleph_1} of them are rigid. Can this affect compactness?

- 4 同 6 4 日 6 4 日